Many medications can interact with alcohol, leading to increased risk of illness, injury, or death. For example, it is estimated that alcohol-medication interactions may be a factor in at least 25 percent of all emergency room admissions. An unknown number of less serious interactions may go unrecognized or unrecorded. This Beyond the ABCs notes some of the most significant alcohol-drug interactions. (Although alcohol can interact with illicit drugs as well, the term ‘drugs’ is used here to refer exclusively to medications, whether prescription or non-prescription.)

How common are alcohol-drug interactions?

More than 5,000 prescription drugs are available in Canada, and physicians write about 250 million prescriptions annually; in addition, approximately 17,000 medications are available without prescription. Approximately 70 percent of the adult population consumes alcohol at least occasionally, and 10 percent drink daily. About 60 percent of men and 30 percent of women have had one or more adverse alcohol-related life events. Together with the data on medication use, these statistics suggest that some concurrent use of alcohol and medications is inevitable.

The elderly may be especially likely to mix drugs and alcohol and are at particular risk for the adverse consequences of such combinations. Although persons age 65 and older constitute only 12 percent of the population, they consume 25 to 30 percent of all prescription medications. The elderly are more likely to suffer medication side effects compared with younger persons, and these effects tend to be more severe with advancing age. Among persons age 60 or older, 10 percent of those in the community fulfill criteria for alcohol abuse.

How Alcohol and Drugs Interact

To exert its desired effect, a drug generally must travel through the bloodstream to its site of action, where it produces some change in an organ or tissue. The drug’s effects then diminish as it is processed (metabolized) by enzymes and eliminated from the body. Alcohol behaves similarly, travelling through the bloodstream, acting upon the brain to cause intoxication, and finally being metabolized and eliminated, principally by the liver. The extent to which an administered dose of a drug reaches its site of action may be termed its ‘availability.’ Alcohol can influence the effectiveness of a drug by altering its...
availability. Typical alcohol-drug interactions include the following. First, an acute dose of alcohol (a single drink or several drinks over several hours) may inhibit a drug’s metabolism by competing with the drug for the same set of metabolizing enzymes. This interaction prolongs and enhances the drug’s availability, potentially increasing the patient’s risk of experiencing harmful side effects from the drug. Second, in contrast, chronic (long term) alcohol ingestion may activate drug-metabolizing enzymes, thus decreasing the drug’s availability and diminishing its effects. After these enzymes have been activated, they remain so even in the absence of alcohol, affecting the metabolism of certain drugs for several weeks after cessation of drinking. Thus, a recently abstinent chronic drinker may need higher levels of certain drugs. Third, enzymes activated by chronic alcohol consumption transform some drugs into toxic chemicals that can damage the liver or other organs. Fourth, alcohol can magnify the inhibitory effects of sedative and narcotic drugs at their sites of action in the brain. To add to the complexity of these interactions, some drugs affect the metabolism of alcohol, thus altering its potential for intoxication and the adverse effects associated with alcohol consumption.

Some Specific Interactions

Anesthetics

Anesthetics are administered prior to surgery to render a patient unconscious and insensitive to pain. Chronic alcohol consumption increases the dose of propofol (Diprivan®) required to induce loss of consciousness. Chronic alcohol consumption increases the risk of liver damage that may be caused by the anesthetic gases enflurane (Ethrane®) and halothane (Fluothane).

Antibiotics

Antibiotics are used to treat infectious diseases. In combination with acute alcohol consumption, some antibiotics may cause nausea, vomiting, headache, and possibly convulsions; among these antibiotics are furazolidone (Furoxone®), griseofulvin (Grisactin® and others), metronidazole (Flagyl®), and anti-malarial quinacrine (Atabrine®). Isoniazid and rifampin are used together to treat tuberculosis, a disease especially problematic among the elderly and among homeless alcoholics. Acute alcohol consumption decreases the availability of isoniazid in the bloodstream, whereas chronic alcohol use decreases the availability of rifampin. In each case, the effectiveness of the medication may be reduced.

Anticoagulants

Warfarin (Coumadin®) is prescribed to retard the blood’s ability to clot. Acute alcohol consumption enhances warfarin’s availability, increasing the patient’s risk for life-threatening hemorrhages. Chronic alcohol consumption reduces warfarin’s availability, lessening the patient’s protection from the consequences of blood-clotting disorders.

Anti-depressants

Alcoholism and depression are frequently associated, leading to a high potential for alcohol-antidepressant interactions. Alcohol increases the sedative effect of tricyclic anti-depressants such as amitriptyline (Elavil® and others), impairing mental skills required for driving. Acute alcohol consumption increases the availability of some tricyclics, potentially increasing their sedative effects; chronic alcohol consumption appears to increase the availability of some tricyclics and to decrease the availability of others. The significance of these interactions is unclear. These chronic effects persist in recovering alcoholics. A chemical called tyramine, found in some beers and wine, interacts with some antidepressants, such as monoamine oxidase (MAO) inhibitors, to produce a dangerous rise in blood pressure. As little as one standard drink may create a risk that this interaction will occur.

Anti-diabetic medications

Oral hypoglycemic drugs are prescribed to help lower blood sugar levels in some patients with diabetes. Acute alcohol consumption prolongs, and chronic alcohol consumption decreases, the availability of tolbutamide (Orinase®). Alcohol also

BEYOND the ABCs: Alcohol-Medication Interactions

AADAC© 2003 www.aadac.com
interacts with some drugs of this class to produce symptoms of nausea and headache such as those described for metronidazole (see Antibiotics).7

Antihistamines

Drugs such as diphenhydramine (Benadryl® and others) are available without prescription to treat allergic symptoms and insomnia. Alcohol may intensify the sedation caused by some antihistamines.15 These drugs may cause excessive dizziness and sedation in older persons; the effects of combining alcohol and antihistamines may therefore be especially significant in this population.19

Anti-psychotic medications

Drugs such as chlorpromazine (Thorazine®) are used to diminish psychotic symptoms such as delusions and hallucinations. Acute alcohol consumption increases the sedative effect of these drugs,20 resulting in impaired coordination and potentially fatal breathing difficulties.7 The combination of chronic alcohol ingestion and anti-psychotic drugs may result in liver damage.23

Anti-seizure medications

These drugs are prescribed mainly to treat epilepsy. Acute alcohol consumption increases the availability of phenytoin (Dilantin®) and the risk of drug-related side effects. Chronic drinking may decrease phenytoin availability, significantly reducing the patient’s protection against epileptic seizures, even during a period of abstinence.8,22

Anti-ulcer medications

The commonly prescribed anti-ulcer medications cimetidine (Tagamet®) and ranitidine (Zantac®) increase the availability of a low dose of alcohol under some circumstances.23,24 The clinical significance of this finding is uncertain, since other studies have questioned such interaction at higher doses of alcohol.25, 26, 27

Cardiovascular medications

This class of drugs includes a wide variety of medications prescribed to treat ailments of the heart and circulatory system. Acute alcohol consumption interacts with some of these drugs to cause dizziness or fainting upon standing up. These drugs include nitroglycerin, used to treat angina, and reserpine, methyldopa (Aldomet®), hydralazine (Apresoline® and others), and quanethidine (Ismelin® and others), used to treat high blood pressure. Chronic alcohol consumption decreases the availability of propranolol (Inderal®), used to treat high blood pressure,7 potentially reducing its therapeutic effect.

Narcotic pain relievers

These drugs are prescribed for moderate to severe pain. They include the opiates morphine, codeine, propoxyphene (Darvon®), and meperidine (Demerol®). The combination of opiates and alcohol enhances the sedative effect of both substances, increasing the risk of death from overdose.28 A single dose of alcohol can increase the availability of propoxyphene,29 potentially increasing its sedative side effects.

Non-narcotic pain relievers

Aspirin® and similar non-prescription pain relievers are most commonly used by the elderly.5 Some of these drugs cause stomach bleeding and inhibit blood from clotting; alcohol can exacerbate these effects.30 Older persons who mix alcoholic beverages with large doses of Aspirin® to self-medicate for pain are therefore at particularly high risk for episodes of gastric bleeding.19 In addition, Aspirin® may increase the availability of alcohol,31 heightening the effects of a given dose of alcohol.

Chronic alcohol ingestion activates enzymes that transform acetaminophen (Tylenol® and others) into chemicals that can cause liver damage, even when acetaminophen is used in standard therapeutic amounts.32,33 These effects may occur with as little as 2.6 grams of acetaminophen in persons consuming widely varying amounts of alcohol.34

Sedatives and hypnotics (sleeping pills)

Benzodiazepines such as diazepam (Valium®) are generally prescribed to treat anxiety and insomnia. Because of their greater safety margin, they have
largely replaced the barbiturates, now used mostly in the emergency treatment of convulsions.\(^2\)

Doses of benzodiazepines that are excessively sedating may cause severe drowsiness in the presence of alcohol,\(^3\) increasing the risk of household and automotive accidents.\(^15,36\) This may be especially true in older people, who demonstrate an increased response to these drugs.\(^5,19\) Low doses of flurazepam (Dalmane\(^\circledR\)) interact with low doses of alcohol to impair driving ability, even when alcohol is ingested the morning after taking Dalmane.\(^6\) Since alcoholics often suffer from anxiety and insomnia, and since many of them take morning drinks, this interaction may be dangerous.\(^37\)

The benzodiazepine lorazepam (Ativan\(^\circledR\)) is being increasingly used for its anxiolytic and sedative effects. The combination of alcohol and lorazepam may result in depressed heart and breathing functions; therefore, lorazepam should not be administered to intoxicated patients.\(^38\)

Acute alcohol consumption increases the availability of barbiturates, prolonging their sedative effect. Chronic alcohol consumption decreases barbiturate availability through enzyme activation.\(^2\) In addition, acute or chronic alcohol consumption enhances the sedative effect of barbiturates at their site of action in the brain, sometimes leading to coma or fatal respiratory depression.\(^39\)

REFERENCES:

25. Fraser, A.G., Hudson, M., Sawyerr, A.M., Smith, M., Rosalki, S.B., & Pounder, R.E. Ranitidine, cimetidine, famotidine have no effect on postprandial absorption of ethanol 0.8 g/kg taken after an evening meal. *Alimentary Pharmacology and Therapeutics* 6(6): 693-700, 1992.

